Wind Power Interval Prediction Based on Robust Kernel Density Estimation

نویسندگان

چکیده

Abstract Wind power output has a high degree of randomness, so it is difficult to describe accurately with some typical probability distribution. The extreme values influence the sample’s general non-parametric kernel density estimation method, and estimated results are relatively conservative. A wind interval prediction method based on robust proposed improve compactness accuracy prediction. In estimation, this will assign small weight sample data reduce its better robustness than method. addition, bandwidth dynamic parameter, which can be adjusted avoid over-conservative

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Conditional Kernel Density Estimation for Wind Power Density Forecasting

Of the various renewable energy resources, wind power is widely recognized as one of the most promising. The management of wind farms and electricity systems can benefit greatly from the availability of estimates of the probability distribution of wind power generation. However, most research has focused on point forecasting of wind power. In this paper, we develop an approach to producing dens...

متن کامل

Kernel-type density estimation on the unit interval

We consider kernel-type methods for estimation of a density on [0, 1] which eschew explicit boundary correction. Our starting point is the successful implementation of beta kernel density estimators of Chen (1999). We propose and investigate two alternatives. For the first, we reverse the roles of estimation point x and datapoint Xi in each summand of the estimator. For the second, we provide k...

متن کامل

Robust Computer Vision through Kernel Density Estimation

Two new techniques based on nonparametric estimation of probability densities are introduced which improve on the performance of equivalent robust methods currently employed in computer vision. The first technique draws from the projection pursuit paradigm in statistics, and carries out regression Mestimation with a weak dependence on the accuracy of the scale estimate. The second technique exp...

متن کامل

Robust Background Modeling with Kernel Density Estimation

Modeling background and segmenting moving objects are significant techniques for video surveillance and other video processing applications. In this paper, we proposed a novel adaptive approach for modeling background and segmenting moving objects with a non-parametric kernel density estimation. Unlike previous approaches to object detection that detect objects by global thresholds, we used a l...

متن کامل

Kernel density estimation-based real-time prediction for respiratory motion.

Effective delivery of adaptive radiotherapy requires locating the target with high precision in real time. System latency caused by data acquisition, streaming, processing and delivery control necessitates prediction. Prediction is particularly challenging for highly mobile targets such as thoracic and abdominal tumors undergoing respiration-induced motion. The complexity of the respiratory mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2023

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2534/1/012011